An improved semidefinite programming relaxation for the satisfiability problem
نویسنده
چکیده
The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that the formula is satisfied. It is well known that SAT is in general NP-complete, although several important special cases can be solved in polynomial time. Semidefinite programming (SDP) refers to the class of optimization problems where a linear function of a matrix variable X is maximized (or minimized) subject to linear constraints on the elements of X and the additional constraint that X be positive semidefinite. We are interested in the application of SDP to satisfiability problems, and in particular in how SDP can be used to detect unsatisfiability. In this paper we introduce a new SDP relaxation for the satisfiability problem. This SDP relaxation arises from the recently introduced paradigm of “higher liftings” for constructing semidefinite programming relaxations of discrete optimization problems. To derive the SDP relaxation, we first formulate SAT as an optimization problem involving matrices. Relaxing this formulation yields an SDP which significantly improves on the previous relaxations in the literature. The important characteristics of the SDP relaxation are its ability to prove that a given SAT formula is unsatisfiable independently of the lengths of the clauses in the formula, its potential to yield truth assignments satisfying the SAT instance if a feasible matrix of sufficiently low rank is computed, and the fact that it is more amenable to practical computation than previous SDPs arising from higher liftings. We present theoretical and computational results that support these claims. ∗Research partially supported by a DO-NET Postdoctoral Research Fellowship and a Bell University Laboratories Research Grant. DO-NET is supported by the European Community within the Training and Mobility of Researchers Programme (contract number ERB TMRX-CT98-0202). 1
منابع مشابه
An Extended Semidefinite Relaxation for Satisfiability
This paper proposes a new semidefinite programming relaxation for the satisfiability problem. This relaxation is an extension of previous relaxations arising from the paradigm of partial semidefinite liftings for 0/1 optimization problems. The construction of the relaxation depends on a choice of permutations of the clauses, and different choices may lead to different relaxations. We then consi...
متن کاملSemidefinite Optimization Approaches for Satisfiability and Maximum-Satisfiability Problems
Semidefinite optimization, commonly referred to as semidefinite programming, has been a remarkably active area of research in optimization during the last decade. For combinatorial problems in particular, semidefinite programming has had a truly significant impact. This paper surveys some of the results obtained in the application of semidefinite programming to satisfiability and maximum-satisf...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملOn semidefinite programming relaxations for the satisfiability problem
This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in conjunctive normal form. We propose a new SDP rela...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 102 شماره
صفحات -
تاریخ انتشار 2005